Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.

Identifieur interne : 000270 ( Main/Exploration ); précédent : 000269; suivant : 000271

Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.

Auteurs : Jiwei Zhang [États-Unis] ; Kevin A T. Silverstein [États-Unis] ; Jesus David Casta O [États-Unis] ; Melania Figueroa [États-Unis, Australie] ; Jonathan S. Schilling [États-Unis]

Source :

RBID : pubmed:31744914

Descripteurs français

English descriptors

Abstract

Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among "white rot" fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates-"brown rot." The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of "decay-stage-dependent" ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.IMPORTANCE Fungi dominate the turnover of wood, Earth's largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot "shortcut" often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches.

DOI: 10.1128/mBio.02176-19
PubMed: 31744914
PubMed Central: PMC6867892


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.</title>
<author>
<name sortKey="Zhang, Jiwei" sort="Zhang, Jiwei" uniqKey="Zhang J" first="Jiwei" last="Zhang">Jiwei Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Silverstein, Kevin A T" sort="Silverstein, Kevin A T" uniqKey="Silverstein K" first="Kevin A T" last="Silverstein">Kevin A T. Silverstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casta O, Jesus David" sort="Casta O, Jesus David" uniqKey="Casta O J" first="Jesus David" last="Casta O">Jesus David Casta O</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture and Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture and Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA schillin@umn.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31744914</idno>
<idno type="pmid">31744914</idno>
<idno type="doi">10.1128/mBio.02176-19</idno>
<idno type="pmc">PMC6867892</idno>
<idno type="wicri:Area/Main/Corpus">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000185</idno>
<idno type="wicri:Area/Main/Curation">000185</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000185</idno>
<idno type="wicri:Area/Main/Exploration">000185</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.</title>
<author>
<name sortKey="Zhang, Jiwei" sort="Zhang, Jiwei" uniqKey="Zhang J" first="Jiwei" last="Zhang">Jiwei Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Silverstein, Kevin A T" sort="Silverstein, Kevin A T" uniqKey="Silverstein K" first="Kevin A T" last="Silverstein">Kevin A T. Silverstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casta O, Jesus David" sort="Casta O, Jesus David" uniqKey="Casta O J" first="Jesus David" last="Casta O">Jesus David Casta O</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Agriculture and Food, Canberra, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Agriculture and Food, Canberra</wicri:regionArea>
<wicri:noRegion>Canberra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA schillin@umn.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungi (genetics)</term>
<term>Fungi (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Wood (chemistry)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Biomasse (MeSH)</term>
<term>Bois (composition chimique)</term>
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Champignons (génétique)</term>
<term>Champignons (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Plantes (microbiologie)</term>
<term>Plantes (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Champignons</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Plants</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Champignons</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Hydrolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Biomasse</term>
<term>Dépollution biologique de l'environnement</term>
<term>Hydrolyse</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among "white rot" fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates-"brown rot." The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of "decay-stage-dependent" ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.
<b>IMPORTANCE</b>
Fungi dominate the turnover of wood, Earth's largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot "shortcut" often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31744914</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e02176-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.02176-19</ELocationID>
<Abstract>
<AbstractText>Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among "white rot" fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates-"brown rot." The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of "decay-stage-dependent" ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.
<b>IMPORTANCE</b>
Fungi dominate the turnover of wood, Earth's largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot "shortcut" often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches.</AbstractText>
<CopyrightInformation>Copyright © 2019 Zhang et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jiwei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Silverstein</LastName>
<ForeName>Kevin A T</ForeName>
<Initials>KAT</Initials>
<AffiliationInfo>
<Affiliation>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castaño</LastName>
<ForeName>Jesus David</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figueroa</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CSIRO Agriculture and Food, Canberra, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schilling</LastName>
<ForeName>Jonathan S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA schillin@umn.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="Y">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">brown rot adaption</Keyword>
<Keyword MajorTopicYN="Y">comparative transcriptomics</Keyword>
<Keyword MajorTopicYN="Y">gene regulation shift</Keyword>
<Keyword MajorTopicYN="Y">plant biomas</Keyword>
<Keyword MajorTopicYN="Y">wood-decomposing fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31744914</ArticleId>
<ArticleId IdType="pii">mBio.02176-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.02176-19</ArticleId>
<ArticleId IdType="pmc">PMC6867892</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1428-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Jul;87(3):871-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2014 Dec;78(4):614-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 26;10(3):e0120679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25811364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Apr;58(4):1266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2018 Feb;145:10-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29242076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Aug;72(8):5662-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Apr;79(7):2377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23377930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Apr;38(4):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Jul 11;10:179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28702084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D7-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26615191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(22):7802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Mar 5;446(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10100613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Sep;58(9):3110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Oct;74(2):480-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19775249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(7):2062-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24441164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Apr;33(4):959-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10968-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27621450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1412-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Apr 1;26(7):873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Nov;4:1425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11538167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2011 Feb 11;10:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21314954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2012 Jun;113(6):697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Feb;12(2):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15036323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Oct 30;84(22):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30194102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2016 Sep 05;9(1):192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11772-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Dec 15;3(12):1367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8747463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 29;288(48):34767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24126915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 May;33(5):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21246254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:427-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25001456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2015 Nov-Dec;107(6):1105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Mar 1;32(5):767-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26559507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72:82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2001 Apr;50(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2017 Sep;106:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28666924</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Zhang, Jiwei" sort="Zhang, Jiwei" uniqKey="Zhang J" first="Jiwei" last="Zhang">Jiwei Zhang</name>
</region>
<name sortKey="Casta O, Jesus David" sort="Casta O, Jesus David" uniqKey="Casta O J" first="Jesus David" last="Casta O">Jesus David Casta O</name>
<name sortKey="Casta O, Jesus David" sort="Casta O, Jesus David" uniqKey="Casta O J" first="Jesus David" last="Casta O">Jesus David Casta O</name>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
<name sortKey="Silverstein, Kevin A T" sort="Silverstein, Kevin A T" uniqKey="Silverstein K" first="Kevin A T" last="Silverstein">Kevin A T. Silverstein</name>
<name sortKey="Zhang, Jiwei" sort="Zhang, Jiwei" uniqKey="Zhang J" first="Jiwei" last="Zhang">Jiwei Zhang</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Figueroa, Melania" sort="Figueroa, Melania" uniqKey="Figueroa M" first="Melania" last="Figueroa">Melania Figueroa</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000270 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000270 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31744914
   |texte=   Gene Regulation Shifts Shed Light on Fungal Adaption in Plant Biomass Decomposers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31744914" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020